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We introduce a method for solving a self-consistent electronic calculation within localized atomic orbitals
that allows us to converge to the complete basis set �CBS� limit in a stable, controlled, and systematic way. We
compare our results with the ones obtained with a standard quantum chemistry package for the simple benzene
molecule. We find perfect agreement for small basis set and show that, within our scheme, it is possible to work
with a very large basis in an efficient and stable way. Therefore we can avoid to introduce any extrapolation to
reach the CBS limit. In our study we have also carried out variational Monte Carlo and lattice regularized
diffusion Monte Carlo with a standard many-body wave function defined by the product of a Slater determinant
and a Jastrow factor. Once the Jastrow factor is optimized by keeping fixed the Slater determinant provided by
our scheme, we obtain a very good description of the atomization energy of the benzene molecule only when
the basis of atomic orbitals is large enough and close to the CBS limit, yielding the lowest variational energies.
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I. INTRODUCTION

The use of localized basis sets is becoming more and
more important in several electronic-structure methods be-
cause it allows a dramatic reduction in the dimension N of
the single-particle basis, i.e., much smaller than standard
plane-wave basis set dimensions. For instance in quantum
chemistry calculations it is very difficult, if not impossible,
to use post-Hartree-Fock methods with extremely large basis
sets because their computational cost scales with a large
power of N �N4−N7�. On the other hand all linear scaling
methods1–4 are based on a suitably localized basis and ex-
ploit the fact that the matrix elements of the Hamiltonian
decay very rapidly with the distance among the orbital cen-
ters. Several other applications are known, and it is basically
impossible to list all of them.

Although our findings apply generally to all the above
issues, in this paper we focus, in particular, on the use of a
localized basis set for Monte Carlo optimization of wave
functions �WFs� because the number of variational
parameters—e.g., in a Slater �S� determinant—is propor-
tional to N, and only with a localized basis it remains in a
reasonable range even for large systems. Therefore, thanks to
the recent advances in the optimization techniques in quan-
tum Monte Carlo �QMC� calculations,5–8 it is possible nowa-
days to optimize a full many-body wave function with an
affordable computational time �proportional to N3−N4�.

Despite the use of localized basis sets is becoming more
and more popular there is an important issue on how to con-
verge to the so-called “complete basis set” �CBS� limit. In
plane-wave calculations this is usually achieved by system-
atically increasing the kinetic-energy cutoff so that a reliable
and very well-controlled convergence is possible. Unfortu-
nately within a localized basis set framework, until now it is
not possible to reach the same level of accuracy of the plane-
wave approach because a too large value of N leads to re-
dundancy of the basis and typically to numerical instabilities.

On the other hand, working with a small basis far from the
CBS limit, leads to the well-known basis superposition error,
that deteriorates the accuracy in the description of the chemi-
cal bond.

The difficulty to work with a localized basis of N nonor-
thogonal orbitals �i�r�� �i=1, . . . ,N� can be quantified by
considering the N�N overlap matrix,

Si,j = ��i�� j� =� d3r��i�r��� j�r�� . �1�

In the following we assume that the atomic orbitals are nor-
malized so that the diagonal elements of the above overlap
matrix are identically equal to one. Since this is an overlap
matrix it is also positive definite, namely, all its eigenvalues
si, henceforth assumed in ascending order, are positive si
�0, and a vanishing eigenvalue occurs only if the orbitals
are linearly dependent.

If the condition number of this positive definite matrix,
namely the ratio scond=

sN

s1
between the largest sN �sN�N, as

the trace of S is �iSi,i=�isi=N� and the lowest eigenvalue s1
is below a certain threshold, calculations are very difficult
and the convergence to the CBS limit is impossible to reach
with standard methods. This problem has been often circum-
vented by extrapolation procedures and/or relying on cancel-
lation errors.9–12 However we believe that, at least for a
simple self-consistent field �SCF� calculation based on the
density-functional theory �DFT� within the standard local-
density approximation �LDA�, it is very important to con-
verge to the CBS limit, essentially in the same way as in a
plane-wave calculation.

Here we show that this important task can be achieved by
applying a simple strategy for the diagonalization of the
Hamiltonian, strategy that can be applied to any SCF calcu-
lation. Moreover we find that, even for the atomization en-
ergy of the simple benzene molecule, it is necessary to work
close to the CBS limit in order to obtain a well converged
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result because, at least in this case, energy differences ap-
proach the CBS limit only slightly faster than the total en-
ergy.

In this work, as already mentioned, we are interested to
combine the Slater determinant obtained by an SCF calcula-
tion with a so-called Jastrow factor, also expanded in a lo-
calized basis �i�r��. In this way an accurate many-body wave
function is defined, that typically describes rather well the
electron correlation, often much better than the original SCF
calculation. Indeed in our QMC calculations, we have also
found that it is very important to use a very large basis set for
the DFT Kohn-Sham �KS� orbitals because only in this case
the corresponding Slater determinant is very close to the op-
timal one, namely, the one that minimizes the energy in pres-
ence of the Jastrow factor. After that we obtain a very accu-
rate atomization energy for this simple molecule, that is
compatible with the experiments, despite our strong restric-
tion of the variational ansatz.

The paper is organized as follows. In Sec. II we describe
the basis of localized atomic orbitals and the variational
wave function used in this work, we briefly review the SCF
LDA method and we show how to work with a large basis of
localized atomic orbitals. In Sec. III we present our results
for the benzene molecule and finally in Sec. IV we draw our
conclusions.

II. COMPUTATIONAL DETAILS

A. Localized basis set

In our DFT LDA-based calculations, we have used S ex-
change and Perdew13 correlation functionals. The KS equa-
tions are solved by expanding the electronic orbitals in a
Gaussian-type orbital �GTO� basis set. Only four valence
electrons are taken into account for the carbon atom. The 1s
core electrons are considered by atomic pseudopotentials that
are also used for the hydrogen atom in order to eliminate the
divergent electron-ion attraction at short distance.14

In the test calculation presented here, we consider the
benzene molecule with experimental carbon and hydrogen
atomic positions. We define a localized basis set centered on
each atom by using simple Gaussians exp�−Zir

2� with given
angular momentum: s , p ,d , f ,g , . . . In order to achieve con-
vergence in a systematic way we define the standard even-
tempered sequence for GTO exponents Zi,

Zi = ��i �2�

for i=0, . . . ,nl−1 with �=Zmin and ��nl =Zmax, where nl is
the number of exponents used for the angular momentum l.
The maximum number n of exponents is used only on the
s-wave channel n0=n, whereas for the higher angular mo-
menta l=1,2 ,3 ,4 , . . . the number of exponents nl is smaller
and is given by following choice:

nl = n0 − 2l . �3�

Notice that the value of � is implicitly defined by the choice
of Zmax that will be discussed in the following.

This basis is obviously complete as long as n and the
maximum l �l� lmax� are systematically increased until con-

vergence is reached. The obvious advantage of our even-
tempered GTO set is that the exponent sequence is deter-
mined by only two parameters, Zmax and Zmin. Our purpose is
indeed to show that a systematic convergence with n and
lmax�4 can be obtained by using a large but not prohibitive
value of n. In practice for large n, the SCF energy is almost
independent on Zmax and Zmin and therefore the choice of
these two parameters can be done by optimizing the DFT
energy for few test cases and by checking the stability of
these two parameter values for large n. As a result we have
verified that the simple choice Zmin=0.2 and Zmax=10 is
nearly optimal for all n in the benzene case, as well as for the
carbon atom. We have therefore adopted these two parameter
values in all the forthcoming calculations. Probably by opti-
mizing all exponents much faster convergence can be ob-
tained but in this work we want to emphasize that it is pos-
sible to work with a large basis set, deliberately larger than
necessary because not fully optimized, and obtain accurate
and systematically converging results without limitations or
constraints, likewise a plane-wave-based approach. As a re-
sult we show that we can achieve this task by using n as
large as 	30, that represents a very important restriction of
the dimension N of the basis, roughly two or three orders of
magnitude smaller compared to a plane-wave-based ap-
proach with the same accuracy in the total energy, e.g., an
accuracy of 0.1 mH in the total energy of the benzene mol-
ecule can be achieved with N�1000 localized orbitals,
whereas at least 2003 plane waves are necessary for the same
target.

B. Description of the SCF method

The DFT functional, within the LDA approximation, can
be evaluated on a given set of atomic orbitals �i�r�� and is
then defined by the overlap matrix S in Eq. �1� and the one
body Hamiltonian matrix elements,

Hi,j = ��i�H1b�� j� + ��i�vH + vxc�� j� , �4�

where H1b contains kinetic energy, electron-ion interaction,
and the pseudopotentials used, whereas vH and vxc are the
Hartree and the exchange and correlation potentials, respec-
tively, both defined only by the total electronic density n�r��.
In this nonorthonormal basis the Kohn-Sham orbitals are
given by


i�r�� = �
j

�ij� j�r�� , �5�

where the coefficients �i,j can be obtained by solving the
generalized eigenvalue problem,

�
j

Hi,j�i,j = Ei�
j

Si,j�i,j . �6�

The density is in turn defined by occupying the Kohn-Sham
orbitals up to the Fermi energy EF

n�r�� = �
Ei�EF

2
i
��r��
i�r�� �7�

and self-consistency is reached when the output density ob-
tained after the diagonalization coincides within numerical
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accuracy with the input density used to evaluate vH and vxc.
In recent years computer performances have substantially

increased and the calculation of overlap and Hamiltonian
matrices elements of the above types can be done rather ef-
ficiently by straightforward integration over a mesh, e.g., by
replacing the integrals with appropriate summations over a
set of electronic positions r�I uniformly distributed in a finite
volume V=Lx�Ly �Lz, spanned by nx�ny �nz mesh points
referred to the x ,y ,z Cartesian axes, respectively, namely,

Si,j = v�
I

�i�r�I�� j�r�I� ,

Hi,j =
1

2
v�

I

	�i�r�I�
HKS� j�r�I�� + 
HKS�i�r�I��� j�r�I�� , �8�

where HKS=H1b+vH+vxc is the Kohn-Sham Hamiltonian
and v=

LxLyLz

nxnynz
is the elementary box volume of the mesh grid.

Notice that in the above discretization of the integrals we
have symmetrized the Hamiltonian matrix elements, thus re-
storing the Hermitian property of the Hamiltonian �Hi,j
=Hj,i� even for a finite mesh.

Further important improvements have been introduced to
allow a fast and efficient convergence of these matrix ele-
ments by increasing the box volume and the size of the mesh
�nx ,ny ,nz→��. For instance the origin of the mesh grid was
chosen in a way to maximize the minimum distance between
the mesh and the ion positions. Moreover the Hartree poten-
tial in atomic units was calculated by the convolution,

vH�r�J� = v�
I�J

1/�r�I − r�J�n�r�I� + Cn�r�J� = 1/VA�
q

vq
cn−q,

�9�

where nq and vq
c are the density and the Coulomb potential

Fourier transform, respectively, whereas the finite constant C
takes into account the infinite contribution of the Coulomb
potential for r�I=r�J, in a way that will be discussed later on.
For open systems, the convolution was computed on a box of
twice linear dimension with volume VA=8V and with the
origin r�= �0,0 ,0� at the center of the box, namely, nx
→2nx , ny→2ny , nz→2nz and �x��Lx , �y��Ly , �z��Lz.
The convoluted density n�r�� is assumed to vanish in VA out-
side the physical volume V �0�x�Lx ,0�y�Ly ,0�z
�Lz� because the charge density is decaying exponentially
fast at large distance from the atoms. Then it is defined pe-
riodic with period �2Lx ,2Ly ,2Lz� so that wave vectors q are
correspondingly quantized q= � /Lxn , /Lym , /Lzl� with
integers n ,m , l, and the standard and extremely efficient con-

volution algorithm based on fast Fourier transform can be
applied, with vq

c =�rJ�VA,rJ�0v / �r�J�e−iqrJ +C. By using this en-
larged box VA, we can avoid to add fictitious contributions to
the Hartree potential that would have raised from nonvanish-
ing replicas with shorter periodicity �Lx ,Ly ,Lz�. It is also
simple to show that in the limit nx ,ny ,nz→�, the Hartree
potential coincides with the exact integral expression in the
physical volume V, where we solve the eigenvalue equations
in Eq. �6�. Finally, in order to have an efficient extrapolation
for nx ,ny ,nz→� at fixed volume, we have adopted a regu-
larization for the Coulomb potential when rI=rJ for open
systems. This is obtained by using an appropriate constant C
that is determined by imposing that the Hartree potential at
r=0 coincides with the exact one for a Gaussian density
n�r��=exp�−r2 /2�, namely, vH�0�=dr31 /r exp�−r2 /2�=C
+v�rI�VA,rJ�0exp�−rI

2 /2� /rI=4 in this case.15 Obviously
C→0 for nx ,ny ,nz→� and therefore this regularization is
only meant to accelerate the convergence but does not
change the limit values of all the quantities computed with
this SCF method.

All the above simple technical improvements allow us to
have a very rapidly convergent calculation in nx ,Lx→� that
is otherwise almost impossible, especially for open systems.
In our application to the benzene molecule we have chosen a
cubic box �nx=ny =nz and Lx=Ly =Lz� and the convergence
vs the box Lx→� and mesh nx→� size are displayed in Fig.
1.

In Table I, we show the same type of convergence also for
the exchange and correlation energies. It is clear that the
rapid convergence of our method applies also to correlation
functions and also that high-quality results can be obtained
with a reasonable computational effort.

The way we compute matrix elements on a grid is obvi-
ously much less efficient then the standard way to use tabu-
lated Gaussian integrals.16 Nevertheless the calculation we
propose is quite simple and straightforward, obviously at
some expense of computer time, but with the remarkable
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) FIG. 1. �Color online� Conver-
gence of the total DFT energy of
the benzene molecule as function
of the box size Lx �left�, in �bohr�,
and the mesh size nx �right� using
the 8s6p even-tempered basis set
described in the text.

TABLE I. Total, exchange, and correlation energies of DFT cal-
culation of the benzene molecule using 24s22p10d6f basis set. A
cubic box �Lx=Ly =Lz� is used. The given values of energies and
box sizes are in �H� and �bohr�, respectively.

nx Lx Total energy Exchange energy Correlation energy

160 16 −37.5404624 −10.6865190 −1.5922693

200 20 −37.5400762 −10.6867874 −1.5922738

240 24 −37.5400821 −10.6867701 −1.5922721

400 20 −37.5400657 −10.6867885 −1.5922732
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advantage that this method can be applied also to non-
Gaussian orbitals, to periodic system, and that the accuracy
of the calculation can be systematically controlled by in-
creasing nx and the volume V. This is particularly important
when the condition number scond becomes extremely large,
and, for an accurate calculation, both overlap and Hamil-
tonian matrix elements have to be calculated with much
higher accuracy. Moreover, for application to QMC compu-
tation, the time spent for a SCF calculation represents only a
negligible amount so that it is not really important that this
part of the calculation is fully optimized. The most important
problem we have solved in this work is the stabilization of
the diagonalization routine for arbitrary large basis set and
given �namely, allowed by double precision arithmetic� ac-
curacy in the calculation. This technique will be described in
details in the next section.

C. Stable diagonalization routine

In this part we describe our way to improve the accuracy
of the SCF algorithm by means of a more stable numerical
solution of the generalized eigenvalue equations given in Eq.
�6�. Basically the task is to compute in a stable way the
eigenvectors of the Hamiltonian defined in a nonorthogonal
basis of large linear dimension N. The problem is that the
overlap matrix S in Eq. �1� may have a very large condition
number and a straightforward diagonalization leads to inac-
curate and often dirty eigenvectors. In parallel computation
there is also the further complication that it is difficult to
preserve orthogonality �and accuracy� of eigenvectors with-
out having a huge buffer memory at disposal, as no efficient
memory distribution is possible for the orthogonalization
procedure. Here we describe the algorithm of our diagonal-
ization routine that solves in a very simple and efficient way
all the above computational issues.

�1� We apply first a diagonalization algorithm to the over-
lap matrix, based on the Householder tridiagonalization and
iterative Givens transform to the resulting tridiagonal matrix.
All these transformations are unitary and should preserve
orthogonality of eigenvectors v j

i for i , j=1, . . . ,N in infinite
precision arithmetic. However this is not the case in practice
since the matrix can be very ill conditioned. Therefore, in
order to improve the stability of the calculation we follow
standard procedures in numerical linear algebra.17 We disre-
gard eigenvectors with small eigenvalues si compared to the
maximum one sN�N, namely, satisfying si /sN��mach,
where �mach is an input parameter, whose minimum value is
around the relative machine precision ��10−16 in double pre-
cision arithmetic�.18 Neglecting small eigenvectors corre-
sponding to small eigenvalues of the overlap matrix is justi-
fied from the fact that an eigenvector of the overlap matrix
with nearly zero eigenvalue corresponds to a linear combi-
nation of normalized orbitals � jv j

i� j�r��, satisfying � j�v j
i�2

=1, that has almost vanishing norm equal to �si, i.e., the
nonorthogonal basis of normalized orbitals is redundant and
this direction can be safely eliminated within an error �si.
Thus after neglecting all these singular directions we obtain a
simple bound for the numerical error �acc expected when
neglecting all these redundant directions,

�acc � mini��si�si/sN � �mach� � ��machsN � ��machN ,

�10�

where in the last inequality we have used that sN�N, as
shown before.

In this step we do not require that the diagonalization has
produced really orthogonal eigenvectors but only that the
eigenvalues have the right order of magnitude, the normal-
ization of eigenvectors is correct, and that the diagonaliza-
tion routine has produced linearly independent eigenvectors,
properties that are easily satisfied even for extremely singular
overlap matrices. Then we define nonsingular directions,

ej
i =

1
�si

v j
i for si/sN � �mach. �11�

In this basis, the overlap matrix s̃i,j = �ei�S�ej� should be equal
to the identity in infinite precision arithmetic, namely, a ma-
trix with minimum condition number scond=1. Thus it turns
out that, in finite precision arithmetic, by recomputing s̃i,j
=�k,lek

i Sk,lel
j we obtain a well-conditioned matrix that can be

diagonalized again with high accuracy,

s̃i,j = �
k

s̃kṽi
kṽ j

k �12�

and therefore now, analogously to the previous case, we can
define directions

ẽk
i =

1
�s̃i

ṽk
i

that remain safely orthonormal even in finite precision arith-
metic. Finally we store the global transformation from the
original basis to the new one

Ui,j = �
k

ej
kẽk

i . �13�

In this basis the generalized eigenvalue 
Eq. �6�� turns in a
standard diagonalization of a very well-conditioned Hamil-

tonian matrix H̃=UHU† because its spectrum corresponds to
the physical spectrum of the original Hamiltonian.

�2� At each iteration we recompute the Hamiltonian ma-

trix H̃ in this new basis. �3� Then apply again our diagonal-
ization routine. �4� Go back to the original basis Wj

i

=�kUj,kW̃k
i for the eigenvectors Wj

i �W̃k
i � of H �H̃�, computed

at each iteration to implement self-consistency and write the
final molecular orbitals in the localized atomic basis set.

The above scheme allows us to obtain a total energy ac-
curacy that, at least in the examples studied in this work, is
below 0.1 mH, namely, one order of magnitude smaller than
the typical target chemical accuracy. This is achieved in an
automatic way, by using �mach�10−16. Namely, even when
the basis used is extremely redundant for N→�, the simple
algorithm, that we have previously described, allows us to
obtain accurate total energies. This solution is general in the
following sense: with the present algorithm it is in principle
possible to work with arbitrarily large value of the basis di-
mension N, namely, even with an overcomplete basis set and,
after removing redundant directions as described in the first
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step of the algorithm, we can work with a well-conditioned
orthonormal basis, obtained after the second diagonalization,
and that provides for large N converged results within the
numerical accuracy �acc possible with the available numeri-
cal precision. Since, as shown before in Eq. �10�, �acc in-
creases very slowly with N, namely, at most as ��N, we do
not expect accuracy problems with basis sets much larger
than the ones used in the examples presented here, even
within double precision arithmetic.

As shown in Fig. 2, the accuracy can be also controlled by
decreasing the value of �mach, a lower value leads to a more
accurate calculation, until one reaches a threshold below the
relative machine precision when instabilities occurs in the
diagonalization because the numerical accuracy of finite pre-
cision arithmetic is simply not enough. Better accuracies
could be in principle possible only with more accurate op-
erations, e.g., by using quadruple precision. Nevertheless, as
anticipated, this algorithm provides a reasonable accuracy in
the total energy with standard, and usually much more effi-
cient, double precision arithmetic.

D. Correlated variational wave function for QMC calculations

In this part we describe our WF which has been used in
QMC calculations. The usual trial WF used in QMC calcu-
lation is the product of an antisymmetric part and a Jastrow
factor. The antisymmetric part is a single Slater determinant
while the Jastrow factor is a bosonic many-body function
which accounts for the dynamic correlations in the system.
Our Slater determinant is obtained with Nel /2 �Nel is the total
number of electrons in the system� doubly occupied molecu-
lar orbitals 
 j�r�, expanded in atomic orbitals as described in
Eq. �5�. The molecular orbitals are obtained from the self-
consistent DFT-LDA calculations explained in the previous
section. The Jastrow factor takes into account the electronic
correlation between two electrons and is conventionally split
into an homogeneous interaction J2 depending on the relative
distance between two electrons, and a nonhomogeneous con-
tribution depending on the positions of one or two atoms, J3
and J4, respectively. It also contains a one particle term J1
that is important to compensate the change in the one particle
density induced by J2, J3, and J4, as well as to satisfy the
electron-ion cusp conditions. The one- and two-body terms
J1 and J2 are defined by the following equations:

J1 = exp��
ia

− �2Za�3/4u�Za
1/4ria� + �

ial

gl
a�al

J �r�i�� �14�

and

J2 = exp��
i�j

u�rij�� , �15�

where i , j are indices running over the electrons and l runs
over different single-particle orbitals �al

J centered on the
atomic center a. ria and rij denote electron-ion and electron-
electron distances, respectively. The corresponding cusp con-
ditions are fixed by the function u�r�=F
1−exp�−r /F�� /2
�see, e.g., Ref. 19�. gl

a and F are optimizable variational pa-
rameters. The three- and four-body Jastrow J3J4 are given by

J3J4�R� � = exp��
i�j

f�r�i,r� j�� �16�

with f�r�i ,r� j�, being a two-electron coordinate function that
can be expanded into the same single-particle basis used for
J1,

f�r�i,r� j� = �
ablm

glm
ab�al

J �r�i��bm
J �r� j� �17�

with glm
ab optimizable parameters. Three-body �electron ion

electron� correlations are described by the diagonal matrix
elements gaa, whereas four-body correlations �electron ion
electron ion� are described by matrix elements with a�b.

The exhaustive and complete expression of the Jastrow
factor J�R� �=J1�R� �J2�R� �J3�R� �J4�R� � that we adopt in this work
allows us to take into account not only weak electron-
electron interactions but it is also extremely effective for
suppressing higher energy configurations occurring when
electrons are too close.

III. RESULTS AND DISCUSSION

In this section we show the remarkable convergence and
stability properties of our method for the calculation of the
total and atomization energies of the benzene molecule in the
CBS limit. To this purpose we consider an atomic basis with
lmax�1, namely, with only s and p type of orbitals allowed
and show that it is possible to converge to the n→� case
even when, for large n, too many orbitals of the same angular
momentum become highly redundant and are difficult to
treat with standard methods.

In Fig. 3 we compared our total DFT energies of the car-
bon atom and the benzene molecule with the ones obtained
with the GAUSSIAN09 package.16 We have used both for
GAUSSIAN09 and our DFT algorithm exactly the same basis
sets and pseudopotentials, treated with maximum accuracy in
the angular integration, and therefore with negligible error,
as well as the same Slater exchange and correlation func-
tional with the standard Perdew-Zunger parametrization.13

For the small basis sets �ns=6,8� we are in excellent
agreement with GAUSSIAN09. However, with large basis sets
�ns�8� there is a clear difference between our results and the
GAUSSIAN09 ones. We do not know exactly what is the reason
of this discrepancy. We just report that, as it is shown in the
lower panels of Fig. 3, the condition number scond is increas-
ing quite rapidly with the dimension N of the basis set, and
the discrepancy between our results and GAUSSIAN09 is evi-
dent when the condition number becomes larger than �108.
Moreover since DFT is a variational method, it should be
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FIG. 2. �Color online� Total DFT energy of benzene molecule in
n=20 case as a function of our regularization cutoff �mach.

SYSTEMATICALLY CONVERGENT METHOD FOR ACCURATE… PHYSICAL REVIEW B 82, 125112 �2010�

125112-5



clear that for a given basis set the method that provides the
lowest value of the functional should be the most accurate,
provided the value of the functional can be calculated accu-
rately. Indeed we have verified that a large condition number
scond�1017 affects only the self-consistent step 
in our case
the diagonalization in Eq. �6�� but allows to compute the
value of the functional without particular problems.20 There-
fore we can safely state that our Kohn-Sham molecular or-
bitals are very well converged, whereas standard methods
suffers to work already with condition number larger than
108.

As a matter of fact our DFT energy for the benzene mol-
ecule converges to a very good value −37.4951453�H� 
e.g.,
the GAUSSIAN09 result in the same basis is −37.4886324�H��.
The quality of our very well converged molecular orbitals is
also evident when we compute the expectation value of the
energy of the corresponding Slater determinant by using the
standard variational Monte Carlo �VMC� technique to com-
pute the energy expectation values �see Fig. 4�. Though it is
clearly inefficient to use VMC to compute energy expecta-
tion values of uncorrelated wave function, it is useful to use
this method in this case because it does not require the ex-
plicit evaluation of the matrix S with very large condition
number.

Moreover the study of the n=20 case as a function of our
regularization cutoff �mach, displayed in Fig. 2, clearly shows

that we can reach a sufficient accuracy ��0.1 mH� in the
total energy even in the large basis set limit, and that there-
fore the results for n=24 should be considered well con-
verged, namely, close to the n→�, lmax=1 case.

It is also particularly interesting to show how the atomi-
zation energy converges in this case. In Fig. 5 our results
clearly indicate that the so-called basis superposition error is
very important in this case and monotonically disappears
only for large n.

Finally we study the convergence of the total energy as a
function of the maximum angular momentum lmax of the
atomic basis. DFT energies are shown in Table II. Though
the difference between lmax=4 �spdfg� and lmax=3 �spdf� is
larger than 1 mH, this table shows that the convergence with
lmax is quite rapid, as each time lmax is increased by a unit the
accuracy improves by more than a factor 3, and therefore for
lmax=4 we should be very close to the CBS limit, well within
1 mH accuracy in the total energy.

In the following we show the importance of being close to
the CBS limit in QMC calculations obtained either by opti-
mizing the Jastrow factor over the Slater determinant defined
by the DFT Kohn-Sham molecular orbitals or by full opti-
mizing both the Jastrow and the molecular orbitals with the
method described in Ref. 5, starting from the former initial
wave function. We indicate in the following the first wave
function by J-DFT-WF, whereas the latter one will be de-
noted by J-OPT-WF.
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FIG. 4. �Color online� VMC computation of the total energy
Evmc of the Slater determinant obtained with Kohn-Sham molecular
orbitals. For comparison we show also the results obtained with
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A 4s3p2d �1s1p� uncontracted Gaussian basis set was
used for expanding the Jastrow factor around each carbon
�hydrogen� atom. Figure 6 shows the convergence of VMC
total energy of the benzene molecule with J-DFT-WF, which
an atomic basis used for the Slater determinant with lmax=1.
This picture shows that the presence of the Jastrow factor
improves the convergence to the n→� limit. For instance
the DFT total energy converges when the basis contains
more than 24s and 22p. Instead, by using the Jastrow factor,
clear convergence is reached already for a 16s14p basis set.
For fixed maximum angular momentum of the atomic basis
lmax in the Slater determinant, we have carried out VMC
calculations of the total energy of the benzene molecule. As
shown in Table III the total energy difference between the
lmax=1 and the lmax=2 cases is about 0.75 �eV� while this
difference for lmax=2 and lmax=3 shrinks to 0.25 �eV�. More-
over our VMC results suggest that it is not necessary to add
g orbital to the basis set, for an accuracy smaller than 0.005
�eV�.

The VMC atomization energy of the benzene molecule
within the J-DFT-WF for fixed lmax is reported in Table IV.
The estimated exact atomization energy of the benzene mol-
ecule is 59.33�3� �eV�,21 by neglecting inner-shell correlation
that we assume to be negligible with the pseudopotentials we
have used.22 Therefore, by optimizing the Jastrow factor, one
can get almost exact atomization energy as long as a large
basis set is considered for the DFT Slater determinant.

One of the main outcome of our work is that the DFT
Slater determinant is a very good input for QMC calcula-
tions, provided the basis used is sufficiently large. In fact by
full optimization of both the Jastrow and the determinantal
parts of the WF and by using a large basis for the Slater

determinant 24s22p10d6f , the VMC total energy of the ben-
zene molecule is −37.6491�3��H�. Hence, the difference be-
tween the VMC total energy using the J-DFT-WF and the
J-OPT-WF is very small 0.035 �eV� and this shows that, by
optimizing the determinantal part of the WF, the total energy
improves only by a small amount and does not appreciably
change the atomization energy of benzene, from 59.37�4�
�eV� to 59.41�3� �eV�. Remarkably from a DFT-LDA atomi-
zation energy that is completely wrong by �10 �eV�, we
can obtain an almost exact atomization energy using the
J-DFT-WF wave function with the Kohn-Sham molecular
orbitals obtained with the energetically poor DFT-LDA
method.

A much different behavior is obtained when the wave
function is fully optimized within a small basis set. Indeed,
we have applied full optimization on the smallest basis set
6s4p, and the VMC total energy using the J-OPT-WF is
−37.6384�5��H�, which is 1.12 �eV� below the corresponding
J-DFT-WF energy. This energy gain is more than one order
of magnitude larger than the one obtained in the previous
case. Therefore we conclude that the Kohn-Sham molecular
orbitals are very accurate only when a sufficiently large basis
is used in the DFT calculation.

In this limit, in order to show the quality of our variational
wave functions, we have carried out lattice regularized dif-
fusion Monte Carlo �LRDMC� �Ref. 23� calculations using
the J-DFT-WF and the J-OPT-WF. The LRDMC total and
atomization energies of the benzene molecule are shown in
Table V. Though the LRDMC improves the VMC total en-
ergy of the benzene molecule by about �1.7 �eV�, the at-
omization energy remains unchanged within the statistical
errors.

IV. CONCLUSION

We have introduced a very simple method to make accu-
rate and systematically converging SCF calculations with lo-

TABLE III. VMC total energy �H� of benzene molecule by us-
ing the J-DFT-WF defined in the text.

l Basis C composition Energy �H�

1 sp limit 24s22p −37.6111�4�
2 spd limit 24s22p10d −37.6386�4�
3 spdf limit 24s22p10d6f −37.6478�4�
4 spdfg limit 24s22p10d6f2g −37.6480�4�

TABLE II. Total DFT energy for the benzene molecule as a function of the highest angular momentum of
the atomic basis. Calculations were done with pseudopotentials �Ref. 14� both for the hydrogen and carbon
atoms at the experimental equilibrium positions while for the hydrogen we have used a 3s2p basis.

L Basis C composition Number of primitive Gaussian Energy �H�

1 sp limit 24s22p 594 −37.4952567

2 spd limit 24s22p10d 894 −37.5357514

3 spdf limit 24s22p10d6f 1146 −37.5400821

4 spdfg limit 24s22p10d6f2g 1254 −37.5416815
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FIG. 6. �Color online� VMC total energy using the J-DFT-WF,
defined in the text, for the benzene molecule as a function of the
number of s and p orbitals. We have used DFT molecular orbital as
a determinant part of trial wave function and only the Jastrow factor
was optimized.
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calized basis sets of increasing dimension. This work shows
that the use of a large basis set may be extremely important
for accurate calculations. It is possible that our method could
be relevant also for defining more efficient electronic-
structure packages that are free of any limitation about basis
set dimension. Preliminary application of the method to pe-
riodic systems are also extremely encouraging,24 because one
can work also in this case with a localized basis set, with
convergence properties similar to plane-wave DFT methods.
For large extended systems the condition number of a GTO
localized basis set increases quite rapidly with the system
size but we have tested in silicon with a supercell containing
up to 256 atoms �i.e., 1024 valence electrons� that our algo-
rithm remains stable for fixed choice of the parameter
�mach�10−16 used to remove the singular directions. Al-
though it is impossible to obtain the error of the finite basis
used �8s6p4d per atom� because the CBS limit is computa-
tionally too expensive for large number of electrons, by com-
paring our results with standard plane-wave methods it turns
out that our accuracy should remain constant for the energy
per atom. This is expected from general grounds, since for
extended systems the condition number of a localized basis
set, defined by a fixed number of orbitals per atom, should
saturate in the infinite volume limit, when orbitals corre-
sponding to atoms that are very far apart remain orthogonal,

because they do not overlap. As we have already remarked
before better accuracy-probably necessary for large extended
systems when for instance the chemical accuracy in the total
energy is required—can be in principle possible with much
smaller �mach that can be used only with a more accurate
arithmetic �e.g., quadruple precision�.

Moreover we have shown that, for QMC applications, our
method is extremely useful because only in the large basis
set limit the output molecular orbitals of our new SCF cal-
culation define an extremely accurate Slater determinant, that
essentially, does not need to be optimized. This work also
highlights a remarkable property of the DFT method,
namely, that, rather surprisingly, the Kohn-Sham molecular
orbitals are rather robust and stable in the large basis set
limit, and do not seem to be very much sensitive to the
accuracy of the functional used. In the benzene example for
instance, the accuracy in the atomization energy with the
LDA functional used was very poor with an error of about
�10 eV, whereas when the same Kohn-Sham orbitals are
used for standard QMC calculation, they provide almost op-
timal results, not only compatible with experiments but also
stable against further optimization of the energy in presence
of the Jastrow factor.
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